Urban Stormwater BMP Performance Assessment and Cost-Benefit Analysis

Melissa Baker, Water Resource Technician Capitol Region Watershed District, St. Paul, MN

Watershed Districts

A special purpose unit of local government

- Area based on watershed boundaries
- Purpose is to manage water resources
- MN Watershed law established in 1955
- 48 Watershed Districts throughout Minnesota
- Board of Managers appointed by County
- Funded through tax levy
- Regulatory authority
- Own & operate drainage systems

Capitol Region Watershed District

- 41 Square Miles (~26,000 acres)
- Portions of 5 Cities
- Population: 245,000
- 42% Impervious Surfaces
- 4 Lakes (Como, Crosby, Loeb, McCarrons)
- All Runoff Ultimately Flows to the Mississippi River

- Subwatershed Boundary
- Water
- Wetlands
 - Trout Brook Storm Sewer

Arlington Pascal Stormwater Improvement Project

- Multi-Jurisdictional Project in the Como 7 Subwatershed
- Goals:
 - Reduce Flooding
 - Address Storm Sewer Improvements
 - Improve Water Quality of Como Lake
 - Determine Equitable Distribution of Costs

Arlington Pascal Stormwater Improvement Project

Original Project Cost: \$2.5 Million

- 60" Storm Sewer Pipe
- No Water Quality Benefits
- Final Project Cost: \$2.0 Million
 - 18 Stormwater BMPs

Stormwater Volume and Pollutant Reduction Benefits
 *Costs do not include bond interest

Final Total Project Capital Cost: \$2.7 Million

*Total Capital Cost = Construction + Design + Bond Interest

Stormwater BMPs

- Underground Stormwater Storage and Infiltration System (Arlington-Hamline Facility)
- Regional Stormwater Pond (Como Park Regional Pond)
- 8 Underground Infiltration Trenches
- 8 Rain Gardens

Stormwater BMPs

- Treatment Train of BMPs
- Total Drainage Area: 190 Acres
- Combined Storage Area: 142,000 ft²
- Combined Storage Volume: 444,000 cf

Underground Stormwater Storage and Infiltration System (Arlington-Hamline Facility)

- Total Capital Cost: \$799,000
- Storage Volume: 86,000 cf
- Drainage Area: 50 Acres
- 849 Feet of 10-Foot Diameter, Corrugated, Perforated Metal Pipes
- Vortech[®] Serves as a Pretreatment Unit
- Began Operation: Fall 2006

Como Park Regional Pond

- Total Capital Cost: \$1,364,000
- Storage Volume: 302,00 cf
- 128 Acres Direct Drainage Area
- Also Receives Discharges From Gottfried's Pit in Roseville (540 Acres)
- Began Operation: December 2007

Underground Infiltration Trenches

- Total Capital Cost: \$400,000
- Combined Storage Volume: 37,000 cf
- Combined Drainage Area: 23 Acres
- Comprised of an Aggregate Backfill with 2, 10-Inch Perforated Pipes
- 30 Sumped Catch Basins and 16 Sumped Manholes
- Began Operation: June 2007

Rain Gardens

Total Capital Cost: \$160,000 Combined Storage Volume: 19,000 cf Combined Drainage Area: 16 Acres All Rain Gardens Were Operational in 2007

BMP Stormwater Monitoring

Since 2007:

- Arlington-Hamline Facility
- 2 Infiltration Trenches (Trenches 4 and 5)
- 8 Rain Gardens
- Como Park Regional Pond (Monitoring Began in 2008)

BMP Monitoring Methods

- Inlet and Outlet (except Rain Gardens)
 - Continuous Water Level and Flow Recorded
 - Water Quality Samples Collected During Storm Events
- For Each Storm Event and Monitoring Season:
 - Determined Total Flow and Calculated Total Phosphorous (TP) and Total Suspended Solids (TSS) Loads
- Also Determined Total Solids Loads Removed

Rain Garden Monitoring

Manual Crest Gauges Installed at the Lowest Point in Each Garden Measured Peak Water Level Reached During a Storm Event

Crest Gauge

Total Solids Load

Sum of:

- Total TSS Load Removed by BMP
- Gross Solids Captured by BMP
- Gross Solids Captured by Pretreatment Units

*Gross Solids are Particles Larger than Suspended Size (Debris Such as Floatables, Organic Matter, and Sediment).

- Gross Solids were Measured in Pretreatment Units for Arlington-Hamline Facility and Trenches
- Gross Solids Captured by Rain Gardens and Como Park Regional Pond Were Estimated

P8 Model

- P8 Urban Catchment Model
 - Program for Predicting Polluting Particle Passage thru Pits, Puddles, & Ponds (William W. Walker, Jr. PhD)
- Simulated the Performance of Each BMP over an Entire Year
 - Total Discharge and TP and TSS Loads
- Calibrated Using Actual Precipitation Data and BMP Monitoring Data
- Annual Results for 2007, 2008, and an Average Precipitation Year (Projected Annual)

Removal Efficiencies

BMP Operation and Maintenance

- Developed Inspection and Maintenance Protocols
- Documented Activities Using Electronic Field Forms
 - BMP, Activity, Staff, Time
- Staff Labor Rates Determined and Used to Calculate Labor Costs of Each Activity
- Determined Annual Operation and Maintenance Costs

BMPs Maintained

Since 2007:

- Arlington-Hamline Facility
 - Vortech[®] Unit
- 8 Infiltration Trenches
 - 30 Sumped Catch Basins
 - 16 Sumped Manholes
- 8 Rain Gardens
- Como Park Regional Pond (Became Operational in 2008)

Arlington-Hamline Facility O&M

Routine O&M:

- Pipe Gallery Inspections
- Vortech[®] Sediment Inspections
- Manhole Sediment Inspections
- Debris Removal From Vortech[®] Unit

Future O&M:

Debris Removal From Pipe Gallery

Como Park Regional Pond O&M

Routine O&M:

- Sluice Gate and Gate Valve Maintenance
- Debris Removal From Pond Perimeter and Outlet Structure
 - Completed by City of St. Paul Parks & Rec

Future O&M:

- Bathymetric Survey of Pond
- Debris Removal From Pond (Dredging)

Infiltration Trenches

Routine O&M:

- Manhole and Catch Basin Sediment Inspections
- Post-Rain Trench Infiltration Inspections
- Debris Removal From Sumped Catch Basins and Manholes
- Catch Basin Hood Inspections and Gasket Replacement

Future O&M:

 Jet Out and Remove Debris Accumulated in Perforated Pipes

Rain Gardens

Routine O&M:

- Monthly Inspections
- Post-Rain Inspections
- Maintenance
 - Mulching, Weeding, Mowing, Leaf Removal

Annual O & M: Costs & Hours

 Total Cost of Labor + Equipment and Materials + Contract Services

	2007		2008		Projected
	0 & M		0 & M		Annual
	Cost	Hours	Cost	Hours	O & M Cost
Arlington-Hamline Facility	\$531	13	\$2,025	14	\$2,867
Como Park Regional Pond	NA	NA	\$6,558	78	\$4,550
Infiltration Trenches	\$5,509	138	\$12,405	88	\$12,339
Rain Gardens	\$14,851	640	\$7,544	406	\$5,803
APSIP Total:	\$20,891	791	\$28,532	585	\$25,559

Cost-Benefit Analysis

Volume Reduction and Pollutant Removal Costs (\$/cf, \$/lb)

Annual Operating Cost / Volume or Pollutant Reduction

Reference Document:

A Public Works Perspective Regarding Cost vs. Benefit for Various Stormwater Best Management Practices (BMPs) Utilized to Manage Stormwater (Minnesota Public Works Association, 2007)

Annual Capital Costs

Total Capital Cost Amortized Over 35 Years

			11030000
	2007	2008	Annual
Arlington-Hamline Facility	\$24,605	\$24,605	\$24,605
Como Park Regional Pond	NA	\$38,981	\$38,981
Infiltration Trenches	\$11,430	\$11,430	\$11,430
Rain Gardens	\$4,578	\$4,578	\$4,578
APSIP Total:	\$40,614	\$79,595	\$79,595

Projected

*Total Capital Cost = Construction + Design + Bond Interest

Annual Operating Costs

Sum of Annual O & M Cost and Annual Capital Cost

			Trojected
	2007	2008	Annual
Arlington-Hamline Facility	\$25,136	\$26,630	\$27,473
Como Park Regional Pond	NA	\$45,539	\$43,531
Infiltration Trenches	\$16,939	\$23,835	\$23,769
Rain Gardens	\$19,429	\$12,122	\$10,381
APSIP Costs:	\$61,505	\$108,127	\$105,154

Drojactad

Volume Reduction and Pollutant Removal Costs

- Volume Reduction Costs = Annual Operating Cost (\$) / Volume Reduction (cf)
- Pollutant Removal Costs = Annual Operating Cost (\$) / TP or Total Solids Load Removed (Ibs)

		Arlington-	Como Park	Infiltration	
		Hamline Facility	Regional Pond	Trenches	Rain Gardens
Annual Operating Cost	2007	\$25,136	NA	\$16,939	\$19,429
	2008	\$26,630	\$45,539	\$23,835	\$12,122
	Projected	\$27,473	\$43,531	\$23,769	\$10,381
TP Removal Cost (\$/lb)	2007	\$1,007	NA	\$1,126	\$3,494
	2008	\$2,517	\$888	\$2,221	\$4,329
	Projected	\$1,828	\$714	\$1,909	\$2,791
Total Solids Removal Cost ^a (\$/lb)	2007	\$0.36	NA	\$0.22	\$0.37
	2008	\$0.55	\$0.23	\$0.61	\$0.46
	Projected	\$0.54	\$0.21	\$0.60	\$0.39
Volume Reduction Cost (\$/cf)	2007	\$0.03	NA	\$0.02	\$0.06
	2008	\$0.07	\$0.02	\$0.03	\$0.07
	Projected	\$0.05	NA	\$0.03	\$0.04

Conclusions

- Monitoring is important
- Properly <u>designed</u>, <u>constructed</u>, and <u>maintained</u>
 BMPs are exhibiting high removal efficiencies
- BMPs are performing as or better than expected
- Volume reduction and pollutant removal costs are largely affected by volume and pollutant load reductions
- Pond had the lowest removal costs
- Continue research
- Pretreatment units are very beneficial

Stormwater BMP Performance Assessment and Cost-Benefit Analysis

Report is available online at: www.capitolregionwd.org

melissa@capitolregionwd.org 651.644.8888

